Correction to “Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS”
نویسندگان
چکیده
Matrix metalloproteases (MMPs) have been found to be highly expressed in a variety of malignant tumor tissues. Noninvasive visualization of MMP activity may play an important role in the diagnosis of MMP associated diseases. Here we report the design and synthesis of a set of fluorine-19 dendron-based magnetic resonance imaging (MRI) probes for real-time imaging of MMP-2 activity. The probes have the following features: (a) symmetrical fluorine atoms; (b) the number of fluorine atoms can be increased through facile chemical modification; (c) readily accessible peptide sequence as the MMP-2 substrate; (d) activatable (19)F signal (off/on mode) via paramagnetic metal ion incorporation. Following optimization for water solubility, one of the probes was selected to evaluate MMP-2 activity by (19)F magnetic resonance spectroscopy (MRS). Our results showed that the fluorine signal increased by 8.5-fold in the presence of MMP-2. The specific cleavage site was verified by mass spectrometry. The selected probe was further applied to detect secreted MMP-2 activity of living SCC7 squamous cell carcinoma cells. The fluorine signal was increased by 4.8-fold by MRS analysis after 24 h incubation with SCC7 cells. This type of fluorine probe can be applied to evaluate other enzyme activities by simply tuning the substrate structures. This symmetrical fluorine dendron-based probe design extends the scope of the existing (19)F MRI agents and provides a simple but robust method for real-time (19)F MRI application.
منابع مشابه
Activatable Dendritic 19F Probes for Enzyme Detection
We describe a novel activatable probe for fluorine-19 NMR based on self-assembling amphiphilic dendrons. The dendron probe has been designed to be spectroscopically silent due to the formation of large aggregates. Upon exposure to the specific target enzyme, the aggregates disassemble to give rise to a sharp 19F NMR signal. The probe is capable of detecting enzyme concentrations in the low nano...
متن کاملIn-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI
BACKGROUND 19F-MRI and 19F-MRS can identify specific cell types after in-vitro or in-vivo 19F-labeling. Knowledge on the potential to track in-vitro 19F-labeled immune cells in tumor models by 19F-MRI/MRS is scarce. AIM To study 19F-based MR techniques for in-vivo tracking of adoptively transferred immune cells after in-vitro 19F-labeling, i.e. to detect and monitor their migration non-invasi...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملNovel non-invasive probes for measuring tumor-hypoxia by 19F-magnetic resonance spectroscopy (19F-MRS). Studies in the SCCVII/C3H murine model.
BACKGROUND 19F-labeled 2-nitroimidazoles bound to hypoxic cells in tumors are known to be useful probes for measuring hypoxia since they can allow for their non-invasive detection by 19F nuclear magnetic resonance, provided that they do not lose 19F during their hypoxia-mediated metabolism. Two such compounds, N-(m-trifluoromethylbenzyl)-3-(2-nitro-1-imidazolyl)-propylamine hydrochloride (mTFN-...
متن کاملPreferred features of a fluorine-19 MRI probe for amyloid detection in the brain.
Fluorine-19 magnetic resonance imaging (19F MRI) could be a promising approach for imaging amyloid deposition in the brain. However, the required features of a 19F MRI probe for amyloid detection remain unclear. In the present study, we investigated a series of compounds as potent 19F probes that could prevent the reduction in MR signal when bound to amyloid plaques in the brain. Each compound ...
متن کامل